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Let Td : L2([0, 1]d ) � C([0, 1]d ) be the d-dimensional integration operator. We
show that its Kolmogorov and entropy numbers decrease with order at least
k&1(log k)d&1�2. From this we derive that the small ball probabilities of the Brownian
sheet on [0, 1]d under the C([0, 1]d )-norm can be estimated from below by
exp(&C=&2 |log =|2d&1), which improves the best known lower bounds considerably.
We also get similar results with respect to certain Orlicz norms. � 1999 Academic Press

1. INTRODUCTION

Let us consider the d-dimensional integration operator Td : L2([0, 1]d )
� C([0, 1]d ) defined as

Td f (x1 , ... , xd) :=|
x1

0
} } } |

xd

0
f ( y1 , ... , yd) dyd } } } dy1 , f # L2([0, 1]d ).

One can view Td as the d-fold tensor product T� } } } �T of the usual one-
dimensional integration operator T=T1 . Let C, C1 , ... denote constants
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(different at each occurrence) which either are universal or depend on the
dimension d only. Our main result concerning Td is the following estimate
for its Kolmogorov and entropy numbers.

Theorem 1. There exist constants C1 and C2 such that

dk(Td)�
C1

k
(1+log k)d&1�2 and ek(Td)�

C2

k
(1+log k)d&1�2

hold for all k�1.

It is known that the Kolmogorov and entropy numbers above can be
estimated from below by Ck&1(log k)d&1. This fact can be proved, e.g.,
by considering the operator Td mapping into L2([0, 1]d ) instead of
C([0, 1]d ) and combining the results of [13] and [8].

In the language of the theory of function spaces, dk(Td) and ek(Td) are
essentially equivalent to Kolmogorov and entropy numbers for Sobolev
classes of functions with L2-bounded mixed derivative. In this setting, the
question was considered by Temlyakov (see, e.g., [25�27]). His result (see,
e.g., Theorem 3.3 from [27]) contains the statement of Theorem 1 in the
case d=2, but for d�3 our estimate is better than its counterpart. We refer
to [11] for entropy bounds of various more classical Sobolev classes.

A motivation for our research came recently from the theory of probabil-
ity. In their remarkable paper [13], Kuelbs and Li showed that for each
Gaussian measure the measures of small balls are closely connected with
the metric entropy of a linear operator. It turns out that the operator Td

is related in this way to the distribution of the Brownian sheet, a very
important Gaussian random field (for the definition see Section 3). There-
fore, our theorem yields substantial progress in the difficult question about
the small ball probabilities of the Brownian sheet (see Theorem 6 below).
For a refined exposition and further development of the ideas of Kuelbs
and Li, we refer the interested reader to [14, Section 7].

The paper is organized as follows. Section 2 is devoted to the operator
Td and contains the estimates of its Kolmogorov and entropy numbers. In
this section we also consider the operator Td under certain Orlicz norms.
The lower bounds for the small ball probabilities of the Brownian sheet are
proved in Section 3.

2. ENTROPY ESTIMATES FOR THE INTEGRATION OPERATOR

2.1. Basic Notions

First, we recall some definitions that are needed throughout this section.
Let S : E � F be a compact operator between Banach spaces. Denote by BE
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and BF the unit balls of E and F, respectively. The covering numbers of a
pre-compact set C/F are defined by

N(=, C) :=min {k�1 : _x1 , ... , xk # C such that C/ .
k

j=1

(xj+=BF )=
and the metric entropy of C is H(=, C) :=log N(=, C). The (dyadic) entropy
numbers can be regarded as inverse function of H. They are defined by

ek(C) :=inf[=>0 : N(=, C)�2k&1]

and we write ek(S) instead of ek(SBE). For any closed subspace F� /F we
denote by QF� the quotient mapping from F onto F�F� . Then the Kolmogorov
numbers of S are defined as

dk(S) :=inf[&QF� S& : F� /F with dim F� <k]

=inf[=>0 : _ F� /F with dim F� <k and SBE /F� +=BF].

Finally, we have to introduce the l-norm of an operator S mapping a
Hilbert space H into a Banach space, which is defined as

l(S) :=sup {\E " :
n

j=1

!jSfj"
2

+
1�2

: n # N; f1 , ... , fn # H orthonormal= ,

where !1 , !2 , ... are independent N(0, 1)-distributed random variables. The
symbol E stands for the mathematical expectation and in the case above it
is nothing but the integral (�R n &�n

1 x jSf j &2 +n(dx))1�2, where +n is the
standard Gaussian measure on Rn.

Next, we recall some properties of the approximation quantities defined
above. Let us consider an operator S mapping a Hilbert space into a
Banach space. We need the following two estimates. A result of Pajor and
Tomczak�Jaegermann [19] provides a relation between Kolmogorov
numbers and l-norm, namely

sup
k�1

k1�2dk(S)�Cl(S) (1)

(cf. [21, Theorem 5.8]). Moreover, we can easily deduce the same inequality
for entropy numbers using Carl's inequality [5]

sup
k�1

k1�2ek(S)�C sup
k�1

k1�2dk(S). (2)

In what follows, we split the operator Td into finite dimensional parts.
Using probabilistic arguments, we give upper bounds for the l-norm of
each part and estimate Kolmogorov and entropy numbers via (1) and (2).
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Remark. As an alternative approach to the entropy estimate one could
use Sudakov's result (cf. [21, Theorem 5.5])

sup
k�1

k1�2ek(S*)�Cl(S),

where S* denotes the dual operator of S, and combine it with the duality
bounds of Tomczak-Jaegermann [29], which provide the links between
ek(S*) and ek(S). For probabilistic applications, which involve only the
entropy numbers, this would be sufficient.

2.2 Multidimensional Haar Basis

The Haar basis in L2[0, 1] consists of the function h&1, 0=1[0, 1] and,
for m�0, of the functions

hm, i (x) :=2m�2h(2m(x&i2&m)),

with i=0, ..., 2m&1, where h :=1[0, 1�2)&1[1�2, 1) . Denote by Jm :=
[0, ... , 2m&1] the index set related to m, for m�0, and J&1 :=[0].
Defining um, i :=Thm, i , we observe

um, i (x)=2&m�2u(2m(x&i2&m))

for m�0, where u(x) :=x1[0, 1�2)+(1&x) 1[1�2, 1) . Consequently, for each
fixed m�0 the sets [x # [0, 1] : um, i (x){0], for i # Jm , are disjoint open
intervals of length 2&m and for the supremum of um, i we have &um, i&C([0, 1])

=2&1&m�2.
In what follows, let m denote a multi-index (m1 , ... , md) # [&1, 0, 1, ...]d.

We define

|m| := :
d

j=1

max(mj , 0)

and introduce the sets Mn :=[m : |m|=n], n=0, 1, ... . One can verify that
the cardinality of Mn is of order nd&1 ; i.e., *(Mn) �� nd&1 for n � �. Let
Jm :=Jm1

_ } } } _Jmd
be the set of all indices which correspond to the index

m. Defining

hm, i :=hm1 , i1
� } } } �hmd , id

and um, i :=um1 , i1
� } } } �umd , id

,

for all m # [&1, 0, 1, ...]d and i # Jm , we introduce the subspaces

Hn :=span[hm, i : m # Mn ; i # Jm]/L2([0, 1]d ), for n=0, 1, ... .
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Clearly L2([0, 1]d )=��
n=0 Hn . We denote by Pn the orthogonal projector

from L2([0, 1]d) onto Hn . Then the operator Td admits the representation
Td=��

n=0 Rn with Rn :=TdPn .

2.3. Key Estimate

The following proposition contains one of our main tools.

Proposition 2. Let Rn : L2([0, 1]d ) � C([0, 1]d ) be defined as above.
Then we have the estimate l(Rn)�Cnd�22&n�2 with a constant C depending
only on d.

Proof. Recall that by definition of l,

l(Rn)=\E sup
t # [0, 1] d } :

m # Mn

:
i # Jm

!m, i um, i (t) }
2

+
1�2

,

where the r.v's (!m, i) are independent and N(0, 1)-distributed. By equiv-
alence of Gaussian norms (cf. [21, Corollary 4.9]) one can omit square and
square root at the cost of a universal constant:

l(Rn)�C E sup
t # [0, 1] d } :

m # Mn

:
i # Jm

!m, i um, i (t) } .
In a first step we apply a time discretization procedure to the stochastic
process

Bn(t) := :
m # Mn

:
i # Jm

!m, i um, i (t), t # [0, 1]d.

For this purpose, consider the grid Gn :=[(2i+1) 2&2n&1 : i=0, ... , 22n]d.
Each x # Gn is the center of a cube }x :=>d

j=1 [ij 2
&2n, (ij+1) 2&2n] where

the ij 's are suitably chosen. Obviously, these cubes cover [0, 1]d ; therefore
we have

E sup
t # [0, 1] d

|Bn(t)|�E sup
x # Gn

sup
t # }x

|Bn(t)&Bn(x)|+E sup
x # Gn

|Bn(x)|.

For the first summand we use the trivial estimate

|Bn(t)&Bn(x)|�max
m, i

|!m, i | :
m # Mn

:
i # Jm

|um, i (t)&um, i (x)|.

Since for fixed m # Mn the functions um, i , i # Jm , have pairwise essentially
disjoint supports, and every }x is contained in one of these supports, the
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sum over i reduces to a single summand. On every }x , moreover, all func-
tions um, i are differentiable and their gradients satisfy

sup
t # }x

|{um, i (t)| 2�C2n�2

(here | } |2 denotes the Euclidean norm on Rd ). Now the mean value
theorem yields

sup
t # }x

|um, i (x)&um, i (t)|�C2n�2 sup
t # }x

|x&t|2�C2&3n�2.

Using finally E maxm, i |!m, i |�C - 1+log N with N :=*(�m # Mn
Jm) (see,

e.g., [21, Lemma 4.14]) we obtain

E sup
x # Gn

sup
t # }x

|Bn(t)&Bn(x)|�C*(Mn) 2&3n�2
- 1+log N�Cnd&1�2 2&3n�2.

The second summand can be treated similarly. Again we have by
Lemma 4.14 of [21]

E sup
x # Gn

|Bn(x)|�C - 1+log *(Gn) max
x # Gn

(E |Bn(x)|2)1�2

�C - 1+log *(Gn) - *(Mn) 2&n�2

�Cnd�22&n�2.

Here we used the estimate &um, i &C([0, 1] d )�2&n�2 for all m # Mn , i # Jm . The
proof is finished. K

Remark. Although the estimate l(Rn)�Cnd�2 2&n�2 seems to be quite
rough, it is asymptotically sharp. Since we do not need this fact here, we
omit the proof (for a proof see [9]).

Proof of Theorem 1. Let S be an operator between Banach spaces.
Suppose supk k1�p dk(S)<�, p # (0, �), then its quasi-norm L (d )

p, �(S) is
defined by

L (d )
p, �(S) :=sup

k�1

k1�pdk(S).

Similarly, one defines L (e)
p, �(S) replacing Kolmogorov numbers by entropy

numbers (cf. [20] or [7]). Recall that rank Rn=: N �� nd&12n. Then, for an
arbitrary fixed p # (0, 2), Proposition 2 and (1) yield

L (d )
p, �(Rn)= sup

1�k�N
k1�pdk(Rn)�Cn(d&1)�p+1�22&n(1&1�p).
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For any given integer K # N we split the operator Td as the sum of

Td := :
K

n=0

Rn and Td := :
�

n=K+1

Rn .

Let us fix a p # (1, 2). The quasi-norm L (d )
p, � is equivalent to an r-norm, for

some r # (0, 1); hence

L (d )
p, �(Td )�C \ :

�

n=K+1

(L (d )
p, �(Rn))r+

1�r

�C \ :
�

n=K+1

(n(d&1)�p+1�22&n(1&1�p))r+
1�r

�CK (d&1)�p+1�2 2&K(1&1�p),

which implies

dK d&1 2K (Td )�CK 1�2 2&K.

Using the estimate rank Td �C �K
n=1 nd&12n�CKd&12K, we have

dCK d&12K (Td )=0, and hence the additivity of Kolmogorov numbers gives

dCK d&12K (Td)�CK1�22&K

for all K # N. Then the monotonicity of Kolmogorov numbers implies

dk(Td)�
C
k

(1+log k)d&1�2

for all k # N. Since L (e)
p, �(Rn)�cpL (d )

p, �(Rn) by Carl's inequality (2), the
same arguments (with some modifications for Td ) prove the statement on
entropy numbers. This method follows closely ideas which can already be
found in [6]. K

One can easily reformulate the result above in terms of metric entropy.

Corollary 3. Let BL2([0, 1] d ) be the closed unit ball of L2([0, 1]d ).
There exists a constant C such that

H(=, Td (BL2([0, 1] d )))�
C
=

|log =|d&1�2

for sufficiently small =>0.
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2.4. Orlicz Norms

For 2�p<� consider the Orlicz function �p(t) :=exp(t p)&1, t�0.
Then the Orlicz space L�p

([0, 1]d ) consists of all measurable functions f
on [0, 1]d with finite Orlicz norm

& f &�p
:=inf {c>0 : |

[0, 1] d
�p( | f (x)|�c) dx�1= .

Our strategy will be the same as for the sup-norm and we also keep the
previous notations. Our first result is in complete analogy with Proposi-
tion 2.

Proposition 4. For Rn : L2([0, 1]d )�L�p
([0, 1]d ) we have

l(Rn)�Cnd�2&1�p2&n�2, where the constant C depends only on d�2 and
p # [2, �).

Proof. In a first step we treat the case p=2. For every fixed x # [0, 1]d

the random variable

Bn(x, |) := :
m # Mn

:
i # Jm

!m, i (|) um, i (x)

has the same distribution as _(x)!, where _(x)2 :=�m # Mn
� i # Jm

um, i (x)2

and !tN(0, 1). Because of &um, i &C([0, 1] d)�2&n�2 and since for fixed
m # Mn the functions um, i are disjointly supported, we can estimate

_(x)�_ :=- *(Mn) 2&n�2 �� n(d&1)�22&n�2.

Therefore, for every *�1, we have

E �2( |Bn(x)|�2_*)=E exp(!2_(x)2�4_2*2)&1

�E exp(!2�4*2)&1

=\1&
1

2*2+
&1�2

&1�
1
*2 .

Integrating x over [0, 1]d and using Fubini's theorem give

E| |
[0, 1] d

�2( |Bn(x, |)|�2_*) dx�
1
*2 .

Whenever &Bn( } , |)&�2
>2_*, one has by definition of the Orlicz norm

|
[0, 1] d

�2( |Bn(x, |)|�2_*) dx>1;
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hence C8 ebyshev's inequality yields

P(| : &Bn( } , |)&�2
>2_*)�

1
*2 .

This implies

E| &Bn( } , |)&�2
=|

�

0
P(| : &Bn( } , |)&�2

>t) dt�2_ \1+|
�

1

d*
*2+=4_,

i.e., we have shown the assertion for p=2. The case 2<p<� can be
proved by interpolation. Recall the well known estimate

& f &�p
�& f &1&%

C([0, 1] d ) & f &%
�2

for all f # C([0, 1]d), where

1
p

=
1&%

�
+

%
2

=
%
2

.

Therefore, using Proposition 2 and Ho� lder's inequality we get

E &Bn( } )&�p
�E &Bn( } )&1&%

C([0, 1] d ) &Bn( } )&%
�2

�(E &Bn( } )&C([0, 1] d ))
1&% (E &Bn( } )&�2

)%

�C(nd�22&n�2)1&% (n (d&1)�22&n�2)%

�Cnd�2&1�p2&n�2

as asserted. K

Using the same technique as for the sup-norm we can derive the follow-
ing results on Kolmogorov and entropy numbers and metric entropy of Td

with respect to the Orlicz norms.

Theorem 5. For all 2�p<� and d�2 there is a constant C=C( p, d )
such that for Td : L2([0, 1]d ) � L�p

([0, 1]d ) and all k # N the estimates

dk(Td)�
C
k

(1+log k)d&1�2&1�p and ek(Td )�
C
k

(1+log k)d&1�2&1�p

hold. This implies the existence of a constant C=C( p, d ) such that

H(=, Td (BL2([0, 1]d )))�
C
=

|log =|d&1�2&1�p

for sufficiently small =>0.
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3. LOWER BOUNDS OF THE SMALL BALL PROBABILITIES OF
THE BROWNIAN SHEET

3.1. Definitions and Results

Consider the centered Gaussian process Bd :=(Bx)x # [0, 1] d with
covariance

E BxBy= `
d

j=1

min(x j , yj)

where x=(x1 , ... , xd ) and y=( y1 , ... , yd ). This process is often called
Brownian sheet. Other authors refer to it as multiparameter Brownian
motion or Kolmogorov�C8 entsov field. In applications the Brownian sheet
tied down in the point (1, ... , 1) plays an important role. In order to obtain this
process one has to alter the covariance as follows E B$xB$y=>d

j=1 min(xj , yj)
&>d

j=1 xjyj . Finally, one can also investigate a modification of the process
which is zero in all points of the boundary of the unit cube, i.e., E B"xB"y=
>d

j=1 (min(xj , yj)&x jyj), which can be regarded as multiparameter
generalization of the Brownian bridge. Our methods below give the same
result for all three definitions since they differ just by ``d&1''-parameter
processes. Note that there exist a completely different multiparameter
generalization of the Brownian motion, namely (Wx)x # [0, 1] d with E WxWy

=(|x|2+| y| 2&|x& y|2)�2, which has a different small ball behavior (see,
e.g., [24]).

It is known that the sample paths of Bd are a.s. continuous. We can
consider them as random elements of the space C([0, 1]d ). It is a natural
question to ask for the asymptotic behavior of the small ball probabilities

P(&Bd &C([0, 1] d )<=)=P( sup
x # [0, 1] d

|Bx |<=) (3)

as = tends to zero. Such probabilities (of the tied down Brownian sheet) are
important for power estimation for Kolmogorov�Smirnov and Kolmogorov
statistics (see [1]). The same question arises if one wants to extend Chung's
law of the iterated logarithm (cf. [28] for d=2) to the Brownian sheet.

The asymptotic behavior of (3) is well known for d=1, where we deal
with the classical Wiener process. In this case, using techniques of differen-
tial equations one has several series representations for the probability (3),
see, e.g., [12, Vol. 2, Chap. 10]. In particular,

log P(&B1&C([0, 1])<=)t&
?2

8=2 .

We refer to [4] for Lp-extensions of this result.
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In the multiparameter case d>1 it is not clear how to use differential
equations and a completely different technique is needed. First estimates
for (3) in the multiparameter case date back only to 1979 when Re� ve� sz
[22] proved for d=2 the existence of constants C1 , C2 such that

exp \&
C1

=2 |log =|5+�P(&B2&C([0, 1] 2 )<=)�exp \&
C2

=2 |log =|+ (4)

for small =. In 1982, Csa� ki [8] found the asymptotic behavior of the small
ball probability of Bd under the L2([0, 1]d )-norm. He showed that

log P(&Bd&L2([0, 1] d )<=)t&
K 2

d

=2 |log =| 2d&2

with constant

Kd :=
2d&2

- 2 ?d&1(d&1)!
.

See [15] for various non-Brownian multiparameter generalizations of this
result. Using the inequality & }&L2 ([0, 1] d )�& }&C([0, 1] d ) one obtains

P(&Bd &C([0, 1]d )<=)�exp \&
C
=2 |log =| 2d&2+ ,

which improves in the case d=2 the upper estimate in (4). The next result
on this problem gave improved lower bounds. In 1986, Lifshits ([18], for
d=2) and in 1988, Bass ([1], for general d ) obtained

exp \&
C
=2 |log =|3d&3+�P(&Bd&C([0, 1] d )<=). (5)

At that stage, a considerable gap of order d&1 remained between the
exponents of the log-terms in lower and upper bounds. In 1994, Talagrand
[28] succeeded in proving the sharpness of (5) for d=2. Later on other
authors adapted the methods of Bass and Talagrand to other processes
(see, e.g., [23, 30]). Surprisingly, the methods of [28] meet intrinsic dif-
ficulties when one tries to apply them for dimension d>2.

Therefore, the question about sharp bounds for the small ball probabi-
lities of Bd for d�3 remains open. The conjecture in Remark 1.1 of [23]
that (5) is also sharp for d�3 is wrong. Indeed, using entropy technique
from [13] we obtain the following lower bound.
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Theorem 6. Let d�2. For some constant C and all sufficiently small
=>0, we have

exp \&
C
=2 |log =|2d&1+�P(&Bd&C([0, 1] d )<=).

For d=2 this bound just reproduces (5), while for d�3 it improves (5)
considerably and reduces the gap between the exponents of the log-terms
in lower and upper bounds to one, independently of the dimension d:

exp \&
C1

=2 |log =| 2d&1+�P (&Bd &C([0, 1] d )<=)�exp \&
C2

=2 |log =|2d&2+ ,

We believe that one of these bounds must be sharp but we are still not sure
which one (recall that for d=2 the lower bound is sharp). For investigations
considering other norms, as, e.g., Ho� lder norms, we refer the interested reader
to [24].

Entropy Bounds for Small Ball Probabilities

We recall first the basic relations between the Brownian sheet, the operator
Td , and the results from [13], which we will use. Let Td* : C*([0, 1]d ) �
L2([0, 1]d ) be the dual operator of Td . One easily verifies that E BxBy=
(TdTd*$x , $y) where $x denotes the Dirac measure in the point x # [0, 1]d.
It follows that the covariance operator of the Brownian sheet Bd equals TdTd*.
Hence, the reproducing kernel Hilbert space HBd

/C([0, 1]d ) possesses
the representation HBd

=Td (L2([0, 1]d )) (see [17, Sect. 9, Theorem 4]).
Denote by KBd

its unit ball Td (BL2([0, 1] d )) and define

.(=) :=&log P(&Bd&C([0, 1] d )<=).

It follows from general results of [13] (see [14, Theorem 7.6]) that for
small =>0,

.(=)�C1 H \ C2=

- .(=�2)
, KBd+ . (6)

Moreover, under the additional assumption

lim sup
= � 0

.(=)
.(2=)

<� (7)
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our Corollary 3 and Theorem 2 from [13] would give the desired result of
Theorem 6,

.(=)�
C
=2 |log =|2d&1.

However, we do not know how to verify (7) and suggest the following
iterative procedure based only on (6).

Proof of Theorem 6. Observe that (5) implies .(=)�C0=&3 as = tends
to zero. Then from Corollary 3 and (6) it follows that

.(=)�- .(=�2)
C1

= \log
- .(=�2)

C2= +
d&1�2

�- .(=�2)
C
=

|log =|d&1�2.

Denoting f (=) :=C=&1 |log =|d&1�2 the inequality above reads as

.(=)� f (=) - .(=�2). (8)

Since there is a constant C3>0 such that f (=�2)�C3 f (=), iteration of (8)
yields

.(=)�(.(=2&N))2&N C � n=1
N&1 2&n

3
f (=)�n=0

N&1 2&n

for all N # N. Since .(=)�C0=&3, the first factor tends to 1 as N � �. Thus
we get

.(=)�C3 f (=)2�
C4

=2 |log =|2d&1

for all sufficiently small =>0. K

Remark. We refer to a forthcoming paper of Li and Linde [16], where
this iteration procedure will be further developed.

Orlicz case

Using the same technique and Theorem 5 we obtain the following lower
bounds for the small ball probabilities of the Brownian sheet Bd , d�2,
under the Orlicz norms considered in Section 2.

Theorem 7. Given 2�p<�, there exists a constant C=C( p, d ) such
that we have

exp \&
C
=2 |log =|2d&1&2�p+�P(&Bd&�p

<=)

for all sufficiently small =>0.
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Remark. For d=2, Talagrand [28] showed that there is an upper
estimate of the same order. For d�3 we only have the sharpness of these
estimates for p=2 (use [8] and observe that & }&�2

�C & }&L2 ([0, 1] d)), for
the remaining p's we do not know the precise behavior of P(&Bd&�p

<=).
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Final Remark. After our paper had been submitted similar results appeared in [3] which
were obtained by completely different methods. We thank Temlyakov and Belinsky for draw-
ing our attention to this article and the paper [2] which is unfortunately almost unavailable.
The analytic background in [3] is similar to ours but for the small ball estimate we obtain
2d&1 as exponent of the logarithmic term while [3] gives just 2d&1+$, for $>0, and a
constant depending on $. Let us still mention that our approach can be extended to a broader
class of random fields (see [10]).
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